Example 2

Calculate the highest value of the moment M that can be loaded on the shaft shown in the drawing below and the total torsion (twist) angle of the shaft. Data: \ (d, l, G, k_s \).

single-task-hero-img

Solution

We do encourage you to watch the solution of this example (and the others) on our YouTube channel. There is explained there how this task should be solved step-by-step. Watching this video will also help you understand the other examples on our website.

\begin{aligned} &\sum M=0 \\ &M_{A}-3 M-M=0 \\ &M_{A}=4 M \\ &M_{A B}=4 M \\ &M_{B C}=M \\ &M_{C D}=M \end{aligned}

The carrying capacity limit state:

\begin{aligned} &\tau_{\max } \geq k_{s}\\ &\tau=\frac{M_{S}}{W_{S}}\\ &W_{A B}=W_{B C}=\frac{\pi \cdot(2 d)^{3}}{16}=\frac{\pi \cdot d^{3}}{2}\\ &W_{C D}=\frac{\pi \cdot\left((2 d)^{4}-d^{4}\right)}{16 \cdot(2 d)}=\frac{15 \cdot \pi \cdot d^{3}}{32}\\ &\tau_{A B}=\frac{4 M}{\frac{\pi \cdot d^{3}}{2}}=\frac{8 M}{\pi \cdot d^{3}}\\ &\tau_{A B}=\frac{M}{\frac{15 \cdot \pi \cdot d^{3}}{32}}=\frac{32 M}{15 \cdot \pi \cdot d^{3}}\\ &\tau_{\max }=\tau_{A B}\\ &\frac{8 M}{\pi \cdot d^{3}} \leq k_{s} \Rightarrow M \leq \frac{k_{s} \cdot \pi \cdot d^{3}}{8}\\ &\varphi=\frac{M_{S} \cdot l}{G \cdot I}\\ &I_{A B}=\frac{\pi \cdot(2 d)^{4}}{32}=\frac{\pi \cdot d^{4}}{2}\\ &I_{C D}=\frac{\pi \cdot\left((2 d)^{4}-d^{4}\right)}{32}=\frac{15 \pi \cdot d^{4}}{32}\\ &\varphi_{A B}=\frac{4 M \cdot l}{G \cdot \frac{\pi d^{4}}{2}}=\frac{8 M \cdot l}{G \cdot \pi d^{4}}\\ &\varphi_{B C}=\frac{M \cdot l}{G \cdot \frac{\pi d^{4}}{2}}=\frac{2 M \cdot l}{G \cdot \pi d^{4}}\\ &\varphi_{C D}=\frac{M \cdot l}{G \cdot \frac{15 \pi d^{4}}{32}}=\frac{32 M \cdot l}{15 G \cdot \pi d^{4}}\\ &\varphi_{C}=\varphi_{A B}+\varphi_{B C}+\varphi_{C D}\\ &\varphi_{C}=\frac{8 M \cdot l}{G \cdot \pi d^{4}}+\frac{2 M \cdot l}{G \cdot \pi d^{4}}+\frac{32 M \cdot l}{15 G \cdot \pi d^{4}}\\ &\varphi_{C}=\frac{182 M l}{15 G \pi d^{4}} \end{aligned}

Source (topic od the task): Niezgodziński Michał E., Tadeusz Niezgodziński, Zadania z wytrzymałości materiałów, WNT, Warszawa 2002, Przykład 5.6 s. 68