EduPanda Logo
  • Kursy online
    • Elektrotechnika / Teoria obwodów
    • Mechanika techniczna
    • Mechanika budowli / konstrukcji
    • Mechanika płynów
    • Metody numeryczne / obliczeniowe
    • Robot Structural Analysis
    • Wytrzymałość materiałów
    • Słownik pojęć
  • Kalkulatory
  • Korepetycje i projekty
    • Elektrotechnika / Teoria obwodów
    • Mechanika techniczna
    • Mechanika budowli / konstrukcji
    • Mechanika płynów
    • Metody numeryczne / obliczeniowe
    • Wytrzymałość materiałów
  • Wzory, wykresy i tablice
  • Cennik
    /
    /
    /
footer-logo
media-instmedia-youtubemedia-fb

© 2024 EduPanda. Wszystkie prawa zastrzeżone.

Kursy

  • Elektrotechnika / Teoria obwodów
  • Mechanika techniczna
  • Mechanika budowli / konstrukcji
  • Mechanika płynów
  • Metody numeryczne / obliczeniowe
  • Robot Structural Analysis
  • Wytrzymałość materiałów
  • Słownik pojęć

Korepetycje

  • Elektrotechnika / Teoria obwodów
  • Mechanika techniczna
  • Mechanika budowli / konstrukcji
  • Mechanika płynów
  • Metody numeryczne / obliczeniowe
  • Wytrzymałość materiałów
Kalkulatory
Wzory, wykresy i tablice
Sklep
Mapa strony
media-instmedia-youtubemedia-fb

© 2024 EduPanda. Wszystkie prawa zastrzeżone.

Szeregi Fouriera

Belki

  1. Edupanda
  2. /
  3. Metody numeryczne
  4. /
  5. Szeregi Fouriera
  6. /
  7. Belki

Przykład 1

free
Przykład 1

Zadanie 2 (5 pkt) Dla belki o dhugości $L$ i sztywności na zginanie $E I$, obustronnie swobodnie podpartej, umiejscowionej na podlożu sprężystym (belka Winklera) i obciążonej jak na rys. poniżej, znaleźć funkcje: przemieszczeń, momentu zginającego oraz sily poprzecznej, stosując szeregi Fouriera. Wyznaczyć odpowiednie wspólczynniki Fouriera, z ich pomocą zapisać wszystkie powyższe funkcje jako sumy $k=1,2, \ldots, K$ składników szeregu, a także obliczyć wartoś|ci tych funkcji dla punktu środkowego belki i najniższej częstości, dającej niezerowe rozwiązanie. Równanie różniczkowe belki na podłożu sprężystym: $E I \cdot \frac{d^{4} y}{d x^{4}}+\kappa \cdot y(x)=q(x)$, gdzie $\kappa$ oznacza stalą sprężystości podloża. Uwaga! Wszystkie całki oznaczone muszą być obliczone z zapisaniem calek nieoznaczonych i podstawieniem granic całkowania.

Zobacz przykład →