Example 1

Draw internal force diagrams M,Q,N. Perform kinematic and static checks.

single-task-hero-img

Solution

1. Determination of the degree of kinematic indeterminacy:

𝑆𝐾𝑁=𝜑+Δ𝑆𝐾𝑁=1+1=2

2. Selection of the basic system of displacement method (UPMP):



Canonical equation system of the displacement method:
𝑟11𝜑1+𝑟12Δ2+𝑟1𝑝=0𝑟21𝜑1+𝑟22Δ2+𝑟2𝑝=0

3. Graphs and determination of coefficients and constants of the equation:

Determination of UPMP coefficients

𝑟11=3𝐸𝐼5+3𝐸𝐼4=27𝐸𝐼20𝑟21=3𝐸𝐼16

Determination of UPMP coefficients

𝑟12=3𝐸𝐼16𝑟22=3𝐸𝐼32


Determination of UPMP coefficients

𝑟1𝑝=25𝑟2𝑝=3,75

4. Solution of the canonical equation system:

27𝐸𝐼20𝜑13𝐸𝐼16Δ2=253𝐸𝐼16𝜑1+3𝐸𝐼32Δ2=3,75𝜑1=33,33/𝐸𝐼Δ2=106,67/𝐸𝐼

5. Final diagrams of internal forces in the frame:

Moment diagram [kNm]
𝑀𝑜𝑠𝑡=𝑀𝑝+𝑀1𝜑1+𝑀2Δ2
MA=0kNmMBA=3EI4𝜑1+3EI16Δ2=5kNmMBC=3EI5𝜑125=5kNmMCB=0kNmMCD=10kNmMD=3EI16Δ25=15kNm

Calculations for the shear force diagram

Element BC:


𝑀𝐶=0𝑄𝐵𝐶55852,5=0𝑄𝐵𝐶=21 𝑘𝑁𝑌=0𝑄𝐶𝐵+2140=0𝑄𝐶𝐵=19 𝑘𝑁
Coordinates of the extreme value of the moment
in element BC:
𝑥21=5𝑥19𝑥=2,625 𝑚
Extreme moment value
Mex=582.6252.6252+212.625=22.56kNm

Element AB:

𝑀𝐴=0𝑄𝐵𝐴4+5=0𝑄𝐵𝐴=1,25 𝑘𝑁𝑄𝐴𝐵=1,25

Element CD:

𝑀𝐷=0𝑄𝐶𝐷4+1015=0𝑄𝐶𝐷=1,25 𝑘𝑁𝑄𝐷𝐶=1,25 𝑘𝑁

Final diagram of axial forces [kN]



6. Kinematic verification

We assume a determinable system and draw a graph of moments from the unit force. (degree of static indeterminacy DSI = 1)

𝛿1=𝑀𝑜𝑠𝑡𝑀1𝐸𝐽𝑑𝑥=1𝐸𝐼(1315413155+1385281546(2115+10))0

7. Static verification

We read the reactions (values and correct directions) from the diagrams of normal forces, shear forces, and bending moments.
Then we write down the equations of static equilibrium and check if all equations are satisfied for the read reactions.

𝑋=01,251,25=0𝑌=021+1948=0𝑀𝐸=0212,51,254+1015+1,254192,5=0