Example 1

What stresses will occur in the gradually non-circular prestressed member AB, supported on both sides and loaded as shown in the figure? Draw the torque-moment and angle of rotation chart. Data: G = 80 GPa

single-task-hero-img

Solution

The coefficients \(\alpha\) and \(\beta\) occurring in the formulas for the moment of inertia and torsional strength index are given in the table below (they depend on the ratio h/b, where b is the shorter side of the rectangle):

\(\begin{aligned}\\ &M_{BC}=M_C\\ &M_{AB}=M_C-30\\ \end{aligned}\)

If the table does not contain coefficients for the desired h/b ratio, we must interpolate values from neighboring data.

Part AB

\(\begin{aligned}\\ &h/b=4/3\\ &\alpha (1.2)=0.219\\ &\alpha (1.4)=0.228\\ \end{aligned}\)

Linear interpolation:

\(\begin{aligned}\\ &\alpha (1.33)=0.219+\frac{0.228-0.219}{0.2}\cdot 0.13=0.22485\\ &\beta (1.2)=0.166\\ &\beta (1.4)=0.187\\ &\beta (1.33)=0.166+\frac{0.187-0.166}{0.2}\cdot 0.13=0.17965\\ \end{aligned}\)

Part BC

\(\begin{aligned}\\ &h/b=8/5=1.6\\ &\alpha (1.6)=0.234\\ &\beta (1.6)=0.204\\ \end{aligned}\)

Torsional moment of inertia for a rectangular section

\(\begin{aligned}\\ &I=\beta b^3 h\\ &I_{AB}=0.17965\cdot 0.03^3\cdot 0.04=1.94\cdot 10^{-7}\ m^4\\ &I_{BC}=0.204\cdot 0.05^3\cdot 0.08=2.04\cdot 10^{-6}\ m^4\\ \end{aligned}\)

To facilitate further calculations, I calculate the ratio \( \frac{I_{BC}}{I_{AB}}\)

\(\begin{aligned}\\ &\frac{I_{BC}}{I_{AB}}=\frac{2.04\cdot 10^{-6}}{1.94\cdot 10^{-7}}=10.515\ \Rightarrow I_{BC}=10.515I_{AB}\\ \end{aligned}\)

Geometric condition - the total angle of twist is equal to 0: \(\varphi_c =0\)

\(\begin{aligned}\\ &\varphi=\frac{M_S\cdot l}{G\cdot I}\\ \\ &\varphi_c=\varphi_{AB}+\varphi_{BC}=0\\ &\varphi_c=\frac{(M_C-30)\cdot 4}{G\cdot I_{AB}}+\frac{M_C\cdot 4}{G\cdot 10.515I_{AB}}=0\ |\cdot GI_{AB} :4\\ &M_C-30+0.095M_C=0\\ &1.095M_C=30\\ &M_C=27.4\ kNm\\ \end{aligned}\)

Static equilibrium condition

\(\begin{aligned}\\ &\sum M=0\\ &M_A-30+M_C=0\\ &M_A=2.6\ kNm\\ \end{aligned}\)

Shear stresses

\(\begin{aligned}\\ &\tau =\frac{M_S}{W_S}\\ \end{aligned}\)

Torsional strength index for a rectangular section

\(\begin{aligned}\\ &W_S=\alpha b^2 h\\ \\ &W_{S_{AB}}=0.22485\cdot 0.03^2\cdot 0.04=8.09\cdot 10^{-6}\ m^3\\ &W_{S_{BC}}=0.234\cdot 0.05^2\cdot 0.08=4.68\cdot 10^{-5}\ m^3\\ \\ &\tau_{AB}=\frac{M_{AB}}{W_{S_{AB}}}=\frac{-2.6\cdot 10^3}{8.09\cdot 10^{-6}}=-321.38\ MPa\\ \\ &\tau_{BC}=\frac{27.4\cdot 10^3}{4.68\cdot 10^{-5}}=585.47\ MPa\\ \end{aligned}\)

Angle of twist:

\(\begin{aligned}\\ &\varphi_A=\varphi_C=0\\ &\varphi_B=\varphi_A+\varphi_{AB}\\ &\varphi=\frac{M_S\cdot l}{G\cdot I}\\ &\varphi_B=\frac{-2.6\cdot 10^3\cdot 4}{80\cdot 10^9\cdot 1.94\cdot 10^{-7}}=-0.67\ rad=-38.39^o\\ \end{aligned}\)

Graphs