Exemple 3

La poutre en bois est suspendue à trois barres - la première et la troisième sont en acier, la deuxième est en cuivre, avec des longueurs \(l_1=3m, l_2=2m, l_3=4m\). Calculez les contraintes qui se produisent dans les barres. Données: \(k_{r_s}t=120 MPa, k_{r_m}=30 MPa, A_1=A_2=2\cdot A_3, E_2=105 GPa, E_1=E_3=210 GPa\)

single-task-hero-img

Solution

Solution YT

Version classique

La somme des forces sur l'axe x ne nous donne rien, donc nous avons deux équations efficaces d'équilibre statique. Les forces dans les trois barres sont inconnues, donc le problème est statiquement indéterminé une fois, pour le résoudre, nous devons utiliser une condition supplémentaire - géométrique (à partir du plan de déplacement).
Équations d'équilibre:
\begin{aligned} &\sum{M_{C}}=0\\ &N_{1}\cdot 4 - 75\cdot 2 - N_{3}\cdot 4 = 0\\ &N_{1}=\frac{150 + 4\cdot N_{3}}{4}\\ &N_{1}=37,5 + N_{3}\\ &\sum{Y}=0\\ &N_{1} - 75 + N_{2} + N_{3} =0\\ &37,5 + N_{3} - 75 + N_{3}=-N_{2}\\ &N_{2}=37,5 - 2N_{3} \end{aligned}
Condition géométrique \begin{aligned} &\frac{\Delta l_{3}-\Delta l_{1}}{8}=\frac{\Delta l_{2}-\Delta l_{1}}{4}\\ \end{aligned} Je transforme et résous la condition géométrique \begin{aligned} &\Delta l_{3}-\Delta l_{1}=2(\Delta l_{2}-\Delta l_{1})\\ &\Delta l_{3}+\Delta l_{1}-2\cdot \Delta l_{2}=0\\ &\Delta l=\frac{N\cdot l}{E\cdot A}\\ &\frac{N_{3}\cdot 4}{E_{3}\cdot A_{3}}+\frac{N_{1}\cdot 3}{E_{1}\cdot A_{1}}-2\cdot \frac{N_{2}\cdot 2}{E_{2}\cdot A_{2}}=0 \end{aligned} À partir de l'énoncé du problème: \begin{aligned} &A_{1}=A_{2}=2A_{3}\\ &\frac{E_{2}}{E_{1}}=\frac{105 \ GPa}{210 \ GPa}=\frac{1}{2} & \Rightarrow 2E_{2}=E_{1}\\ &E_{1}=E_{3}\\ \end{aligned} Je substitue ces relations dans l'équation précédente \begin{aligned} &\frac{N_{3}\cdot 4}{2E_{2}\cdot A_{3}}+\frac{(37,5 + N_{3})\cdot 3}{2E_{2}\cdot 2A_{3}} - 2\cdot\frac{(37,5 - 2N_{3})\cdot 2}{E_{2}\cdot 2A_{3}}=0 & |\cdot E_{2}A_{3}\\ &2N_{3} + \frac{3}{4}(37,5 + N_{3}) - 2(37,5 - 2M_{3})=0\\ &2N_{3} + 28,125 + 0,75N_{3} - 75 + 2N_{3}\\ &4,75N_{3}=46,875\\ &N_{3}=9,868 \ kN \end{aligned} Je reviens aux relations des équations d'équilibre statique et calcule les forces dans les autres barres \begin{aligned} &N_{1}=37,5 + N_{3}=47,368 \ kN\\ &N_{2}=37,5 - 2N_{3}=17,764 \ kN\\ \end{aligned} Je résous la condition de résistance pour toutes les barres \begin{aligned} &\sigma=\frac{N}{A}\\ &\sigma_{1}=\frac{47,368\cdot 10^{3}}{A_{1}}\le 120\cdot 10^{6} & \Rightarrow & A_{1}\ge 3,95\cdot 10^{-4} \ m^{2}\\ &\sigma_{2}=\frac{17,764\cdot 10^{3}}{A_{2}}\le 30\cdot 10^{6} & \Rightarrow & A_{2}\ge 5,92\cdot 10^{-4} \ m^{2}\\ &\sigma_{3}=\frac{9,868\cdot 10^{3}}{A_{3}}\le 120\cdot 10^{6} & \Rightarrow & A_{3}\ge 8,22\cdot 10^{-5} \ m^{2}\\ \end{aligned} Je prends finalement la section transversale des barres en compte en se souvenant de la relation de l'énoncé du problème \begin{aligned} &A_{1}=A_{2}=2A_{3}\\ &A_{1}=A_{2}=6\cdot 10^{-4}\\ &A_{3}=\frac{1}{2}\cdot 6\cdot 10^{-4}=3\cdot 10^{-4}\\ \end{aligned} Je calcule les contraintes dans les barres pour la section transversale adoptée \begin{aligned} &\sigma_{1}=\frac{47,368\cdot 10^{3}}{6\cdot 10^{-4}}=78,95 \ MPa\\ &\sigma_{2}=\frac{17,764\cdot 10^{3}}{6\cdot 10^{-4}}=29,60 \ MPa\\ &\sigma_{3}=\frac{9,868\cdot 10^{3}}{3\cdot 10^{-4}}=32,89 \ MPa\\ \end{aligned}